Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
TrAC - Trends in Analytical Chemistry ; 162 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2293300

ABSTRACT

Biomarker detection has attracted increasing interest in recent years due to the minimally or non-invasive sampling process. Single entity analysis of biomarkers is expected to provide real-time and accurate biological information for early disease diagnosis and prognosis, which is critical to the effective disease treatment and is also important in personalized medicine. As an innovative single entity analysis method, nanopore sensing is a pioneering single-molecule detection technique that is widely used in analytical bioanalytical fields. In this review, we overview the recent progress of nanopore biomarker detection as new approaches to disease diagnosis. In highlighted studies, nanopore was focusing on detecting biomarkers of different categories of communicable and noncommunicable diseases, such as pandemic COVID-19, AIDS, cancers, neurologic diseases, etc. Various sensitive and selective nanopore detecting strategies for different types of biomarkers are summarized. In addition, the challenges, opportunities, and direction for future development of nanopore-based biomarker sensors are also discussed.Copyright © 2023 Elsevier B.V.

2.
International Journal of Diabetes and Metabolism ; 27(3):108, 2021.
Article in English | EMBASE | ID: covidwho-2283503

ABSTRACT

Background: It is well established that diabetic patients infected with COVID-19- are at higher risk of developing severe symptoms that may lead to death. Such observation argues for the possibility that SARS-CoV-2 may target and infect pancreatic islets. SARSCoV- 2 is thought to enter the cells through the binding of viral spike S1 protein to ACE2. The cellular entry process includes priming of the S protein by TMPRSS2 and ADAM17, which facilitate the binding and promote ACE2 shedding. To date, no conclusive evidence has emerged to address the expression of TMPRSS2 and ADMA17 or the interaction between SARS-CoV-2 and human pancreatic islets. Method(s): Microarray and RNA-sequencing (RNA-seq) expression data from human islets were used to profile the expression pattern of ACE2, ADAM17, and TMPRSS2 in diabetic and non-diabetic subjects. Result(s): Pancreatic islets express all three receptors regardless of diabetes status. ACE2 expression was significantly elevated in diabetic islets than non-diabetic. Female donors showed to have higher ACE2 expression compared to males, whereas ADAM17 and TMPRSS2 were not affected by gender. No difference in the expression of the three receptors in young (<=40 years old) compared to old (>=60 years old) islets. Obese donors (BMI>30) showed significantly higher expression levels of ADAM17 and TMPRSS2 as compared to non-obese (BMI<25). Expression of TMPRSS2 was associated positively with HbA1c and inversely with age, while ADAM17 and TMPRSS2 were associated positively with BMI. Muscle and subcutaneous adipose tissues showed similar expression of the three receptors in diabetic and nondiabetic donors. Conclusion(s): ACE2 expression is increased in diabetic human islets. More studies are warranted to understand the permissiveness of human pancreatic beta-cells to SARS-Cov-2 and whether variations of ACE2 expression could explain the severity of COVID-19 infection between diabetics and non-diabetic patients.

3.
Journal of Hypertension ; 41:e88, 2023.
Article in English | EMBASE | ID: covidwho-2244622

ABSTRACT

Objective: COVID19 is associated with vascular inflammation. IFN-alpha (IFNa) and IFN-lambda3 (IFNl3) are potent cytokines produced in viral infections. Their effects involve interferon-stimulated genes (ISGs) and may influence expression of angiotensin-converting enzyme 2 (ACE2), the receptor for S-protein (S1P) of SARS-CoV-2. We hypothesized that S1P-induced immune/inflammatory responses in endothelial cells (EC) are mediated via IFN-activated pathways Design and methods: Human ECs were stimulated with S1P (1 mg/mL), IFNa (100ng/mL) or IFNl3 (100IU/mL). Because ACE2, ADAM17 and TMPRSS2 are important for SARS-CoV-2 infection, we used inhibitors of ADAM17 (marimastat, 3.8 nM), ACE2 (MLN4760, 440pM), and TMPRSS2 (camostat, 50 mM). Gene and protein expression was investigated by real-time PCR and immunoblotting, respectively. Vascular function was assessed in mesenteric arteries from wild-type (WT) normotensive and hypertensive (LinA3) mice and in ISG15-deficient (ISG15KO) mice. Results: S1P increased expression of IFNa (3-fold), IFNl3 (4-fold) and ISGs (2-fold) in EC (p < 0.05). EC responses to IFNa (ISG15: 16-fold) were greater than to IFNl3 (ISG15: 1.7-fold) (p < 0.05). S1P increased gene expression of IL-6 (1.3-fold), TNFa (6.2-fold) and IL-1b (3.3-fold), effects that were amplified by IFNs. Only the ADAM17 inhibitor marimastat inhibited S1P effects. IFNa and IFNl3 increase protein expression of ADAM17 (27%) and TMPRSS2 (38%). No changes were observed on ACE2 expression. This was associated with increased phosphorylation of Stat1 (134%), Stat2 (102%), ERK1/2 (42%). EC production of IL-6 was increased by IFNa (1,230pg/mL) and IFNl3 (1,124pg/mL) vs control (591pg/mL). Nitric oxide generation and eNOS phosphorylation (Ser1177) were reduced by IFNa (40%) and IFNl3 (40%). Vascular functional responses demonstrated that endothelium-dependent vasorelaxation (% Emax) in vessels from WT-mice stimulated with IFNa (67%) and IFNl3 (71%) were reduced vs control (82%) (p < 0.05). Responses were not altered in vessels from ISG15KO mice. Increased contraction was observed only in vessels from hypertensive mice treated with IFNa (9.1 ± 0.5mN vs control: 7.3 ± 0.3mN) (p < 0.05). Conclusions: In ECs, S1P, IFNa and IFNl3 increased ISG15 and IL-6 by mechanisms dependent on ADAM17. IFNs amplifies endothelial cell inflammatory responses and induced vascular dysfunction through ISG15-dependent mechanisms, with augmented effects in hypertension. Our findings demonstrate that S1P induces immune/inflammatory responses that may be important in endotheliitis associated with COVID-19. This may be especially important in the presence of cardiovascular risk factors, including hypertension.

4.
European Journal of Inflammation ; 20, 2022.
Article in English | EMBASE | ID: covidwho-1938133

ABSTRACT

Objectives: The development of effective targeted therapy and drug-design approaches against the SARS-CoV-2 is a universal health priority. Therefore, it is important to assess possible therapeutic strategies against SARS-CoV-2 via its most interaction targets. The present study aimed to perform a systematic review on clinical and experimental investigations regarding SARS-COV-2 interaction targets for human cell entry. Methods: A systematic search using relevant MeSH terms and keywords was performed in PubMed, Scopus, Embase, and Web of Science (ISI) databases up to July 2021. Two reviewers independently assessed the eligibility of the studies, extracted the data, and evaluated the methodological quality of the included studies. Additionally, a narrative synthesis was done as a qualitative method for data gathering and synthesis of each outcome measure. Results: A total of 5610 studies were identified, and 128 articles were included in the systematic review. Based on the results, spike antigen was the only interaction protein from SARS-CoV-2. However, the interaction proteins from humans varied including different spike receptors and several cleavage enzymes. The most common interactions of the spike protein of SARS-CoV-2 for cell entry were ACE2 (entry receptor) and TMPRSS2 (for spike priming). A lot of published studies have mainly focused on the ACE2 receptor followed by the TMPRSS family and furin. Based on the results, ACE2 polymorphisms as well as spike RBD mutations affected the SARS-CoV-2 binding affinity. Conclusion: The included studies shed more light on SARS-CoV-2 cellular entry mechanisms and detailed interactions, which could enhance the understanding of SARS-CoV-2 pathogenesis and the development of new and comprehensive therapeutic approaches.

5.
Journal of Hypertension ; 40:e29, 2022.
Article in English | EMBASE | ID: covidwho-1937690

ABSTRACT

Objective: COVID19-associated immunopathology is associated with increased production of interferon (IFN)-alpha (IFNα) and lambda3 (IFNL3). Effects of IFNs are mediated by interferon-stimulated genes (ISGs) and influence expression of angiotensin-converting enzyme 2 (ACE2), the receptor for S-protein (S1P) of SARS-CoV-2. Increasing evidence indicates vascular inflammation in cardiovascular sequelae of COVID19. We hypothesized that S1P-induced immune/inflammatory responses in endothelial cells (EC) are mediated via IFNα and IFNL3. Design and method: Human ECs were stimulated with S1P (1 μg/mL), IFNα (100ng/mL) or IFNL3 (100IU/mL). Because ACE2, metalloproteinase domain-17 (ADAM17) and type-II transmembrane serine protease (TMPRSS2) are important for SARS-CoV-2 infection, cells were treated with inhibitors of ADAM17 (marimastat, 3.8 nM), ACE2 (MLN4760, 440pM), and TMPRSS2 (camostat, 50 μM). Gene and protein expression was investigated by real-time PCR immunoblotting, respectively. Vascular function was assessed in mesenteric arteries from wild-type (WT) normotensive and hypertensive mice and in ISG15-deficient (ISG15KO) mice. Results: EC stimulated with S1P increased expression of IFNα (3-fold), IFNL3 (4-fold) and ISG (2-fold)(p < 0.05). EC exhibited higher responses to IFNα (ISG15: 16-fold) than to IFNL3 (ISG15: 1.7-fold)(p < 0.05). S1P increased gene expression of IL-6 (1.3-fold), TNFα (6.2-fold) and IL-1β (3.3-fold), effects that were maximized by IFNs. Only marimastat inhibited S1P effects. IL-6 was increased by IFNα (1,230pg/mL) and IFNL3 (1,124pg/mL) vs control (591pg/ mL). This was associated with increased phosphorylation of Stat1 (134%), Stat2 (102%), ERK1/2 (42%). Nitric oxide production and eNOS phosphorylation (Ser1177) were reduced by IFNα and (40%) and IFNL3 (40%). Reduced endothelium relaxation maximal response (%Emax) was observed in vessels from WTmice stimulated with IFNα (67%) and IFNL3 (71%) vs control (82%)(p < 0.05) but not in vessels from ISG15KO mice. Increased contraction was observed only in vessels from hypertensive mice treated with IFNα (9.1 ± 0.5mN vs control: 7.3 ± 0.3mN, p < 0.05). Conclusions: In ECs, S1P, IFNα and IFNL3 increased ISG15 and IL-6, processes that involve ADAM17. Inflammation induced by S1P was amplified by IFNs. IFNs induce vascular dysfunction through ISG15-dependent mechanisms, with augmented effects in hypertension. Our findings demonstrate that S1P induces immune/inflammatory responses that may be important in endotheliitis associated with COVID-19. This is especially important in the presence of cardiovascular risk factors, including hypertension.

6.
Journal of Crohn's and Colitis ; 16:i069-i070, 2022.
Article in English | EMBASE | ID: covidwho-1722299

ABSTRACT

Background: The current novel coronavirus (SARS-CoV-2) pandemic is an ongoing global health crisis, which represents an important challenge for the whole society and mankind. Patients with inflammatory bowel disease (IBD) are treated with immunosuppressive drugs that are usually associated with more severe viral infections. However, the effects of the different therapies on the risk of SARS-CoV-2 infection and Covid-19 severity in IBD patients are still under investigation. Methods: Between April 2020 and April 2021, 238 IBD patients (N=145 with Crohn disease and N=93 with Ulcerative colitis) of the North Italy area have been enrolled. Both serum samples (N=238 IBD patients and N=45 healthy donors) and colon biopsies from inflamed and non-inflamed mucosa (N=88 IBD patients N=20 non-IBD control) have been collected. To evaluate the exposure to SARS-CoV-2, both clinical data and seroprevalence of anti-SARS-CoV-2 Ab have been analyzed. Serum samples were analyzed by untargeted metabolomics analysis and the frequency of a serum metabolomics signature associated with protection were evaluated in IBD versus healthy donors. Moreover, gene expression analysis of key proteins for virus entry (ACE2, TMPRSS2, TMPRSS4, ADAM17) were analyzed by qPCR in the gut mucosa biopsies of IBD patients. Results: The seroprevalence of anti-SARS-CoV-2 Ab in our cohort of IBD patients (10/238) indicates an overall lower incidence of COVID-19 in comparison with the general population of Lombardy. Accordingly, we observed that the serum metabolomics signature associated with protection was more frequent in IBD patients treated with anti-TNF (N=50, 70%), than healthy controls (N=45, 50%). Gene expression analysis of the proteins involved in SARS-CoV-2 entry also indicated that IBD patients treated with anti-TNF (N=14) had a lower mucosal level of SARS-CoV-2 receptor ACE2 and its sheddase ADAM17 than non-IBD subjects along with higher expression of the proteases TMPRSS2 and TMPRSS4. Moreover, vedolizumab-treated patients (N=7) showed a significant lower expression of ACE2, TMPRSS2 and TMPRSS4 than controls, whereas ADAM17 levels were similar. Conclusion: Our study indicates that IBD population treated with biologics has an overall lower risk to contract SARS-CoV-2 infection. Future studies to gather the mechanisms underpinning the effects of biologics on the expression of the proteins involved in SARS-CoV-2 viral entry in association with the specific metabolomics signature of viral susceptibility might shed light on potential targets to increase resistance in higher risk subgroups of patients.

SELECTION OF CITATIONS
SEARCH DETAIL